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Goals of CV: evaluating and 
recognizing image content

Prior to obtaining semantics from images, we 
need to extract: 

• locations; 

• shapes of geometric objects in an image; 

• motions in a video sequence; 

• or projective transformations between images 
of the same scene;

• Etc.



What have in common all these 
applications?

• Presence of noise

• Neighbourhood processing involved
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What have in common all these 
applications?

• Presence of noise

• Neighbourhood processing involved

• The neighbourhood may contain more objects

• Without prior segmentation it is unclear what 
we measure in the window. 

• RE can alleviate this chicken and egg problem.  



Some CV applications using RE



Reconstruction: 3D from photo 
collections

YouTube Video

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, The Visual Turing Test 
for Scene Reconstruction, 3DV 2013

From Svetlana Lazebnik

https://www.youtube.com/watch?v=NdeD4cjLI0c
http://www.cse.wustl.edu/~furukawa/papers/3dv-2013.pdf


Reconstruction: 4D from photo 
collections

YouTube Video

R. Martin-Brualla, D. Gallup, and S. Seitz, Time-Lapse Mining from Internet 
Photos, SIGGRAPH 2015

From Svetlana Lazebnik

https://youtu.be/wptzVm0tngc
http://grail.cs.washington.edu/projects/timelapse/TimelapseMiningSIGGRAPH15.pdf


Outline

• Introducing RE from an image filtering perspective

• M estimators

• Maximum likelihood estimators (MLE)

• Kernel density estimators (KDE)

• The RANSAC family 

• Some examples and conclusions

• Not a survey of RE in CV

• Raising awareness about RE



Robust estimation 
A detail preserving image smoothing perspective



Image smoothing filter goal:

Generate a smoothed image from a noisy image



Image smoothing filter goal:

Generate a smoothed image from a noisy image

Usual assumptions:

– Noise is changing randomly - unorganized

– Useful image part: piecewise smooth  



Smoothing filter approach:

For each pixel:

– Define a neighbourhood (window)

– Estimate central pixel’s “true” value using all pixels 

in the window 

– Assumption: the estimate should be “similar” to 

pixels in the window 

– Filters differ in similarity definition
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What is the problem?

• The processing window may contain more 
objects or distinctive parts of an object.

• This violates the assumption of similarity with
central pixel.

• If we average pixels, we reduce the effect of 
random noise…

• but we blur the image and lose some 
meaningful details.



Some filter comparisons
Original noisy mean   5x5                        binomial 5x5

median 5x5



Why did the median filter a better 
job?  

• Preserving edges

• Cleaning “salt and 
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Why did the median filter a better 
job?  

• Preserving edges

• Cleaning “salt and 
pepper” noise

• Robust estimation 
perspective of the 
question



M estimator for filter design
Huber, P. J. (2009). Robust Statistics. John Wiley & Sons Inc.

Pixels: color vectors in a window: 𝐟𝑖

Estimated color: መ𝐟

Residuals: 𝑟𝑖 = 𝐟𝑖 − መ𝐟

Loss function: 𝜌 𝑢

Minimize loss: መ𝐟 = argminσ𝑖𝜖𝑊 𝜌(𝑟𝑖)
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M estimator for filter design
Huber, P. J. (2009). Robust Statistics. John Wiley & Sons Inc.

Pixels: color vectors in a window: 𝐟𝑖

Estimated color: መ𝐟

Residuals: 𝑟𝑖 = 𝐟𝑖 − መ𝐟

Loss function: 𝜌 𝑢

Minimize loss: መ𝐟 = argminσ𝑖𝜖𝑊 𝜌(𝑟𝑖)

Least squares (LS) loss: 𝜌 𝑢 = 𝑢2

Solution: መ𝐟 = σ𝑖𝜖𝑊 𝐟𝑖/σ𝑖𝜖𝑊 1 i.e. the mean



M estimator for filter design

Weighted LS: 𝜌 𝑢𝑖 = 𝑤𝑖(𝑢𝑖)
2

Solution: መ𝐟 = σ𝑖𝜖𝑊𝑤𝑖𝐟𝑖/σ𝑖𝜖𝑊w𝑖

i.e. the weighted mean 



M estimator for filter design

Weighted LS: 𝜌 𝑢𝑖 = 𝑤𝑖(𝑢𝑖)
2

Solution: መ𝐟 = σ𝑖𝜖𝑊𝑤𝑖𝐟𝑖/σ𝑖𝜖𝑊w𝑖

i.e. the weighted mean 

• Can be any convolution filter, including 
binomial, if weights depend on distance to 
window center.



M estimator for filter design

Weighted LS: 𝜌 𝑢𝑖 = 𝑤𝑖(𝑢𝑖)
2

Solution: መ𝐟 = σ𝑖𝜖𝑊𝑤𝑖𝐟𝑖/σ𝑖𝜖𝑊w𝑖

i.e. the weighted mean 

• Can be any convolution filter, including 
binomial, if weights depend on distance to 
window center.

• Weights for the bilateral filter depend on 
distance in space-value domain from 
central pixel. 



M estimator for filter design

Absolute value loss: 𝜌 𝑢 = 𝑢

Suppose gray value images, so the loss
function has derivative – sign(u).



M estimator for filter design

Absolute value loss: 𝜌 𝑢 = 𝑢

Suppose gray value images, so the loss
function has derivative – sign(u).

Solution: σ𝑖𝜖𝑊 I(መf > f𝑖) = σ𝑖𝜖𝑊 I(መf < f𝑖),

Equal number of lower and higher values 
than the estimate,

i.e. the median: middle of the ordered set. 
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Why did the median filter outperform 
convolution filters?

Outlier samples in the filtering window have 
less influence on the median than on the 
weighted mean.

Influence function (IF) of a linear filter:

Any sample can have unbounded effect on the 
estimate (not robust!)

Higher residual sample - higher influence (!!!) 
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Loss function and IF of the median filter

Bounded (and equal) influence of all samples.
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Loss function and IF of the median filter

Bounded (and equal) influence of all samples.

Brake down point (BP): number of points arbitrarily 
deviated causing arbitrarily big estimation error. 

Median BP: 50%.
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Loss function and IF of the median filter

Bounded (and equal) influence of all samples.

Brake down point (BP): number of points arbitrarily 
deviated causing arbitrarily big estimation error. 

Median BP: 50%.

Linear filters: 0%: one very bad outlier is enough …

Note, the vector median is a different story.
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Should we always use the sample median?

• When data do not contain outliers the mean 
has better performance.

• We want estimators combining the low 
variance of the mean at normal distributions 
with the robustness of the median under 
contamination.  

• Let us compare the two filters also from the 
maximum likelihood perspective! 
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How can we design robust loss functions?

• We need a way to cope with the presence of 
outlier data, while keeping the efficiency of a 
classical estimator for normal data.

Two types of approaches:

1. Shaping the ρ(u) function

2. Analysis of the set of residuals



1.Shaping the ρ(u) function

We want to give less influence to points with 
residuals beyond “some value”. 



Huber ρ and ψ functions

Ricardo A. Maronna, R. Douglas Martin and V´ıctor J. Yohai, Robust Statistics: Theory and 

Methods , 2006 John Wiley & Sons
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Lots of robust loss functions have been studied.

How to choose best parameters for a loss function?



2. Analysis of the set of residuals

Order statistics approaches
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2. Analysis of the set of residuals

Order statistics approaches

- L estimators: linear combination on ordered 
statistics set x(i).

- Samples weighted according to position in
ordered set
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L estimator examples.

𝑎𝑖 = 𝐼(𝑚 < 𝑖 ≤ 𝑛 −𝑚)/(𝑛 − 2𝑚)

a1=1

Min = morphological erosion
.  .  .

.  .  .

aN=1

Max = morphological 
dilation

.  .  . .  .  .

am=1

Median

Trimmed 
mean 

.  .



The trimmed mean

• Let                              and 

• The β-trimmed mean is defined by

• is the sample mean after the m largest and the m
smallest samples have been discarded

• Half percentage of discarded samples: β

ǉ𝑥𝛽 =
1

𝑁 − 2𝑚
෍

𝑖=𝑚+1

𝑁−𝑚

𝑥 𝑖

𝛽 ∈ )[0,0.5 𝑚 = 𝑖𝑛𝑡 𝛽 𝑁 − 1
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• Limit cases

– β=0        → the sample mean

– β →0.5 → the sample median

The trimmed mean – cont.
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• Limit cases

– β=0        → the sample mean

– β →0.5 → the sample median

– Adaptive trimmed mean: 
-

– RE of variance: median of absolute deviations: 
MAD = median(ri)

– BP of β % trimmed mean = β %

The trimmed mean – cont.

Variance                β



M estimation and the mean shift filter 

Weighted LS loss with weights depending on closeness 

to estimate (not just position in the window):
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M estimation and the mean shift filter 

Weighted LS loss with weights depending on closeness 

to estimate (not just position in the window):

Needs iterations to be solved because the weights 

depend on the unknown estimate!
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Mean shift iterations are similar with M estimators

Minimize loss <–> maximize probability density

Algorithm: gradient ascent to find maxima of the 

kernel probability density estimate (KDE) 

Fukunaga 1975, Comaniciu & Meer 2002

Mean shift used for filtering, segmentation, tracking…

𝑤 ො𝐱 − 𝒚 = 𝑔(||ො𝐱 − 𝒚||/ℎ)

g: derivative of the density interpolation kernel
h: scale (degree of smoothing) 
Radially symmetric distance metric here



Mean shift iterations are similar with M estimators



What if we have more than just 50% outliers?

This situation occurs often in key point based 
image registration.



How do we build a panorama?

•Detect feature points in both images

•Find corresponding pairs



Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images
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Can we beat the 50% BP of the median?

• If outliers do not conspire, it should be possible 
☺

• Probability density mode definition does not 
imply majority!

• Needing a good search strategy (and good 
parameter setting).  Better than an (inspired) 
initial guess.

• Random sample consensus (RANSAC) approach.

• Especially designed in the CVIP community.

Along with Hough, MINPRAN etc. 
M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 
381-395, 1981. 

http://www.ai.sri.com/pubs/files/836.pdf
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-Generate many potential solutions.
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RANSAC is also a voting approach like mode
detection.

Using a sampling strategy for optimization.

Randomly select a minimum size subset of points 
to generate a solution:

-Generate many potential solutions.

-Select the solution with the best consensus. 

-Best consensus means maximum inliers (within 
defined limits), i.e. maximum density in the 
solution space.

Developments: MLESAC, NAPSAC, PROSAC…

We used KDE with RANSAC (softer thresholds)



RANSAC 

• Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining points (i.e., points 
whose distance from the line is less than t)

• If there are d or more inliers, accept the line and refit using all 
inliers



Model fitting example 

Detect lines using RANSAC…



RANSAC for line fitting example

Source: R. Raguram



RANSAC for line fitting example

Least-squares fit

Source: R. Raguram
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and-verify loop

Source: R. Raguram



84

RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-
and-verify loop

Source: R. Raguram



85

RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-
and-verify loop

Uncontaminated sample

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-
and-verify loop

Source: R. Raguram



Choosing the parameters

( ) ( )( )s
epN −−−= 11log/1log

( )( ) pe
Ns

−=−− 111

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

Source: M. Pollefeys

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random sample is 

free from outliers (e.g. p=0.99) (outlier ratio: e)



Other RE applications

– Detail preserving image filtering 

– Background estimation for video surveillance

– Finger detection and tracking for human 

computer interface

– Posterior attenuation feature extraction for 

steatosis rating



Detail preserving image 
smoothing

Multiscale mode filter - Improves mean shift filter 

Gui - EUSIPCO 2008



Background segmentation in videos



Background segmentation in videos

Assumptions: 

Static camera 

The background is what we see “most frequently” at each  

location

Approaches:

Parametric density estimation: MoG

Non-parametric: KDE

)}(max{arg xb p=



HMI based on finger detection 
and tracking

Using histograms of  l and 𝜑
to find fingerlet density modes

Fast,1D subspace search  

Fingerlet

feature



Any questions, please? 

Robust posterior attenuation feature extraction for steatosis rating



Conclusions

• M estimators more general than MLE

• KDE: similar with M but with probabilistic view

• RANSAC and related algorithms: a powerful search method    

• Principles from robust estimation worth to be kept in mind for 

successfully solving a large variety of CV problems. 



Thank you for your 
attention!

Questions? 


